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Many papers are congerned with the dynamics of 8 rlgid body with a cavity
filled with ligquid {ses the biblicgraphy in [1]). The present paper deals
with the metion of a rigid body having & cavity partly filled with a viscous
incompressidle iiquid, and having a free surface. The shspe of the cavity
in arbitrary. The problem is considered in a linesr formuiation. The oseil-
lations of the body with respect to its center of inertis and the motion of
the ligquid in the cavity are assumed small. The viscosity of the liquid is
considered low. The solution of the problem of the cscillations of a body
with a cavity partly filled with an ideal liquid 1s used as an inlitial appro-
ximdtion {1 to 6]. The viscosity 1ig taken Into consideration by the boundary
layer method used before in similar problems [1 and 7 to 10}. General equa-
tions are derived for the dynamics of & body filled with & ligquid, for an
arbitrary form of cavity. The coefficlents of those integro-differentisl
eguations depend only on the solutlon of the problem of the osgillations of
2 body with a cavity of the given form filled with an ideal liquid. Since
the corresponding problem has been solved for cavitlies of many forms {1 to

&, 11 and 12] in the case of an idesl ligquid, the determination of the char=
acteristic coefficients 1s reduced to the evaluatlon of quadratures. Several
particular cases of motion are considered.

1. Statemsnt of the prodlem. t a rigid body of mass m; have g cavity
containing a mass mp, of a viscous incompress~
ible liquid of density p and kinematic vis-

cosity v ‘and also 8 gas at & constant pres-

sure Py . We shall neglect the influence of

the motlion of the gas.

For an unperturbed motion we shall consider
the translation of the body together with the
ligquld, The ligquid £ills the domsin 2 bounded
by the surface of the cavity walls § and the
surface I . Let us take {or refersnce with
respect o the rigid body an arbitrary point
Fig. 1 g of the surfsce I . Iet us introduce two
carteslan systems of coordinates, Ox,xaxs
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fixed with respect to the body, 8nd 0y, y.y. which moves with the point o .
We shall assume that in the unperturbed motion those systems of coordinsates
colncide, that the surface I 1l1les in the plane 0Ox,¥, and that in the

domain D occupled by the liquid we have x, <0 {Pig.1},

sl & COVP At Y PR w - e

In the system of coordinates 0y, ya¥s the body and the liquid are subject
to forces due to the masses; their acceleration g = g, — R, results from
the acceleration due to the gravity g, and the forces of inertia, Here Ry
1s the absolute radius vector of the peint ¢ and the dots refer to the
derivatives with respect to time ¢ . In the unperturbed case, the accelera~
tion of the masses g has a constant direction opposite to that of the axis
X3 .« Since go 18 a constant veetor, thls 1s possible in the followlng
cases: {1} the acceleration of Ry" of the translation motion is constant in
magnitude and direction; (2]} the acceleration Ry 1s colinear with the vec~
tor g and varies arbitrarily in megnitude; (3) the acceleration Rs is
constant in direction and g, = O (case of welghtlessness),

Looking now at the pertufbed motion, we shall conslder that the angles
between the coordinate axes Oxyxy,x, and 0Oy, ¥2¥. , the absolute angular
velocity w of the body, and the projections of the acceleration g on the
axes x, and x, are small quantitles of the first order. The veloclity u
of the liguid in the system of coordinates 0y, V., and function S deter-
mining the equation of the disturbed free surface of the liquid x,=7(q,xa,1),
have the same order of magnitude. The problem 18 considered in the linear
formulation. Let us write the momentum eqguation and the equation of the
moments for the system "body + 1liquid"

Q“‘—‘-"—F"%‘mg, K'=M+(M1f1+mzrz)xg, mmmi"}‘MQ
Q=m1r1'+m2r2', K:J;-m +p gl‘ X udV (11)

D

Here @ 1is the momentum of the body with liquid in the system Oy V¥,
K is the moment, with respect to ¢ , of the momentum In the same system,
¥ 1is the main vector of all external forces applied to the body {except for
the forces of gravity and inertia)}, M 1s the main moment of those forces
wlth respect to the reference ¢ . The vector-radil of the centers of iner-
tia of the body and of the liquid are represented by p, ant r, , respec-
tively {those vectors, as well as » , are measured from the origin 0), and

J3 1s the tensor of inertia of the body with respect to the point ¢

With an accuracy up to the higher order terms we have (1_2)

Myry + Mery = mMyry 4 P S vdV +p Sl‘de =mr.+p (ez Sxxfdﬁ' + e Sxade )
b B X pa!

Here Y. is the vector radlus {with respect to the reference ¢ ) of the
center of inertia of the system "body + liguid” in the unperturbed state
{when the liquid is at rest in the system of coordinates Oxxxgxb) s ®, are
the unit vectors of the axes Ox,, ¢ = 1, 2, 3. 1t is evident that the vec~
tor r., 85 well as the vector »,, are stationary in the system Ox x,x; .
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The derivatives of the unit vectors e, are determined by Equations
e, =X e (i--1,2 3 (1.3)

and are small gquantities of the first order. We note also that according to
the assumptions made, we have an accuracy up to the higher order terms

g=—ges+ gie; -+ g02, gi=g-0, |&i|<<g=g] (=123 (1.4)

Substituting (1.2) to {1.%) into Equations {1.1) and neglecting higher
order terms, we have

Q =F -+ mg, g=8—Ry, m == my - Me
K=M<+mr. xg-+ pg(eg lede—el ngde) (1.5
bt x
Q:mer€+p(e1leg—id5+e2$x2%’;~d8) Kle-m—q—pSrXudV
b3 b3 o]

The linearlized equations of motion of the liquid with respect “to the sys-
tem Oy, YV, and the boundary conditions have the form

w=—plyp +g-+vAu, divu=0 inp, u=0Xr oné§
Aduy dug Ouq dus ' dus -
—55%‘5;;—0» a_xs+ P =0, p —2pv 9 = Do
ug = (@ X 1) €3+ 8f]0  tor m=]f (31, 72 1) (1.6)

Here the index ¢ denotes a partial derivative, p’ 1s the pressure in
the liquid, the u, are the projections on the axes x, of the veloclty u
of the liquild wlth respect to the system O0y,¥.¥% . The last equation of
(1.6) expresses the kinematic condition on the free surface. Let us intro-
duce a new unknown function

p=(" —p)/p—gr
and let us rewrite the relations (1.6) taking (1.4) into account and express-
ing the conditions on the nonperturbed free surface I

w=—yp-+vAu, divu=0 ipp, u=®Xr onS
. = (@ X r)-e3 + 3f ] dt, P — &f + 8121 + gaxy == 2v0ug | i3
Auy dus du du
'55; axl = Wy "'a-iz— + ﬁ == 0 on X (1.7)

Equations (1.5) and (1.7) describe the dynamics of the body with the
liquid. It is necessary to add to them the usual kinematic relations {for
instance in the form (1.3}), and also possibly, the other eguations which
complete the system; for instance, the equations of the control system, the
equations concerning the other solids, coupled wilth the body under considera-
tlion, and so on. When considering Cauchy's problem, 1t 1s necessary to spe-
¢ify the initial conditilons for the body (position and velocity of the body)
and the liquid

u(r, tO) = Uy (1‘), i(xlv Zg, to) = fo (1‘1, xz) ('18)

The function u, must satisfy the continulty condition, and alsoc, together
with Jf,, the boundary conditions {1.7) at the instant ¢, . )



1170 P.L. Chernous'ko

Below, Equations (1.5) and (1.7) are investigated in the case of a high
Reynolds number: 271413 4, i.e. for the case of & low viscoslity. Here
£ 1is the characteristic Iinear dimension of the cavlty, I 18 the charac-
teristic time, the order of magnitude of which 1s that of the perlod of the
oscillations of the body or of the liquid inside the cavity. Without loss
of generality, choosing £ and 7T for units of length and time we get
v <1 . Thus the problem reduces to the asymptotic solution of the equations
of hydrodynamics (1.7) for v <1 and the ensuilng simplification of Equa-
tions (1.5).

2. Analysis of the hydrodynamiocs equations., We seek the solution of the

problem (1.7) as was done in {9 and 10] by the method of the boundary layer
[13], assuming

u=v-+w, p=gq-+s, v=vlt Vvl 4, 2.1
g=q¢" +vig 4+ ..., f=171 4V v)

Here the superscript refers to the number of the approximation. The func-
tions w and 8 are functions of the boundary layer type. They can also
be expanded in serles of the powers of vVg whereupon all the coefficlents
of the terms in w* and 8% decrease rapldly when the distance to the bound-
aries of the domain 0 1increases. Let us denote by Dg and Dy the domains
of the boundary layer adjacent from the inside to the surfaces S and I ,
and having a thickness of the order of v'z, Then outside l)g and DE we
can assume W = 0 and 8 = 0O .,

The functions w and 8 satisfy Equations (1.7) in the same manner as

the functions v and ¢ . Their boundary conditions are obtailned by the
followilng recurrent process. Let us assume the functions vt!, ¢!, w!, s'and
J! have already been found for { =0, 1, .., # — 1 . To determine the func-

tions vx, ¢* and J* we shall require that they satisfy, together with the
approximations found earlier, the condition u-n = (w X r)sn on the wall §
and the first two conditions (1.7) on I . Here n 1s the unlt vector of
the normal to § directed inwards. Then we determine the functions w* and
8* which, as the functions found earlier, must satisfy the condition u* =

= (wx P)* on § , the last two conditions (1.7) on £ and also the condi-
tions W'~ O and 8*—~ O outside Dg and D,. The asterisk refers always
to the projection of the vector on the plane tangent to the surface S . The
recurrent process described leads to the serles (2.1) each subsequent term
of which 1s a quantity of order «+': with respect to the previous one.

For the functions v* and ¢* which satisfy Equations (1.7) we have
vif = —ygF 4+ AvE2, div vF =0 (k —=0,1,...) (2.2)
whereby for % = O, 1 the term Av* ? does not appear in the first equation
of (2.2).
Thus we have (rot v°),= (rot v*),= O . We shall assume that the initial
distribution of the velocities (1.8) 1s potentlal everywhere, except, maybe
on the boundary layer domains l)s,l)z- Then at ¢t = t, , we shall have

rot ¥*= 0 in 2 for all functions v" . Consequently, rot v°= rot v'= 0
in D for all ¢t = t; . By induction 1t can be easily proved that
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rot v*w O , AV*« O for all % when ¢ = t5 . Without loss of generality
and taking (2.2) into consideration, we shall assume that
VE= gt g - — gk, AgE o0 (ko 0 (2.3)
Below we shall limit ourselves to the determination of the functions o*
and J* (and consequently v* and g¢*) for k = 0, 1 and also of the func-

tions w°® and 8° which will be simply denoted by w and & (1.e. only by
those terms which are expressed in {2.1)).

The boundary condition for the functions o° and J°, as it follows from
(2.3) and (1.7) and the described method of construction of the solutlon in
the form (2.1), will be as follows:

Ag® =01n D, 09" | dn = (@ > v)-n on ¥
09° |0z = (0 X 1)-e3+ 917/ 0t, @°+ gf°—gx1—go12=0 onx (2.4)

This is the usual problem for an ldeal 1liquid, the solutlon of which as
known from [1 and 3 to 5], can be sought in the form

¢ = 0101 + 0,05 4 @Dy + 2.‘3 @ () §i (21, T2, 1)
- =0
) § o
f = ZJ bh” (t) ‘Pk (1'1, Ty, 0) (2:))

k=0
Here w,= w+e; represent the projections of the vector @ on the axes
x, ; the a,°, b, ° are coefficlients yet unknown and the &,, ¢, represent
time independent functions of x,, x3 and x;. The functions &, are Zhu-
kovskil potentials for the domain J° , under the condition that the free
surface L 1is replaced by a rigid wall. They satisfy the boundary condi-

tlons A(D.; = 0 in D, G(D{/an = (l‘ X n)~ei on &

00, /0zs = (r X eg)-¢; onE (i=12,3) (2.6)
and are determined with an accuracy up to any arbitrary constanta. The func-
tions ¥, are the elgenfunctions of the problem of the free osclllations of
an ideal liquid (2.7)

g e
A\pk:O in D, %=O on S, a——‘:;\f\pk on 2 k=0,4,...)
It 4s known [1], that the problem {2.7) has an infinite discrete spectrum
of finite eigenvalues X,, whereupon Xis= O , and all other 1\, &re real and
positive. The functions t,(xl, Xa, X3 ) represent a complete orthogonal
system in D and the functlions v,tx,, xg, O) a complete orthogonal system
in T . Thus, using Green's theorem and the boundary conditions (2.7) we

have P oy 52
1 k 1 ! ! S
dszx,__.g —EapdS = —,dS =~ \ $,,dS
ES%‘% ?ukz 8 Jxg ¥ hkz § dxs b 7*?:2 ¥ LA
There follows the orthogonality of the functions #,(x,, x5, O) and
[} Ln, xz;0) on I for X,#XL. We shall subJect the functions ¢, to the norm
chndition

S‘pk\pl = 6}(‘I (k’ l= 0» 1) .. ) (28)
b
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(where & i1s Kronecker's symbol).
ki

By virtue of (2.6) and (2.7) the expansions (2.5) satisfy the equations
and the condition (2.4) concerning S . In order to satisfy also the condi-
tions (2.4) on the surface T , we shall substitute 1n those conditions the
expansions (2.5) and we shall express the derivatives 230,/3x, and 3y, /dx,
on £ 1n terms of the conditlons (2.6),(2.7). The equations obtalned 1n
the domain I (for x,;= O) will be expanded in Pouriler serles along the ortho-
gonal system of functions w,(xl, x5, 0) and the coefficlents corresponding
to the same §, equated to each other. We obtaln a system of equations for
the coefficients of the expansions (2.5). This system 1s given in [1, 3 and

4] in somewhat different notations. 3 (2.9)
oy* 9 . . | \ ! .
(") = May’, (@) + gby° — g1k — ga Aoy + Z 0; By =0 (k=0,1,...)
i=1

The following notations were introduced for the Fourler coefficlents:

a

A= \z0dS (=12, Bu=\OpdS (-123 k=01, (210

% N

Let us determine the functions w and 8 which we shall seek separately
in the domalns I)S and 1)2 (similar solutions can be found in [1, 9 and
10]). In the domain Dg, which has a thickness of the order of '@ and is
adJjacent from the inside to the surface S , we shall introduce curvilinear
orthogonal coordinates €, n and ( such that the surface Z 1s the sur-
face ( = O , whereby ( > O , inside the domain Dsg.

Let wg,Wy; and wy be the components. of the vector w 1in those coor-
dinates, }?g,]{ﬂ and IY( the corresponding coefficients of Lamé, and }Ygﬂ
IYn°, }Yt° the values of those coefficients for ( = O . Without loss of
generallity, let us take }It° = 1, then { 1s the distance to the surface
S along the internal normal n .

Let us write the equatlons of motion (1.7) substituting in them u for
w,p for s , in the coordinates &, n and (¢ . Then let us make the

change of variables
ng = 'vlfza, w, = Vo, (2.1'1)
and take the 1limit when v -~ O 1in the equations of motion.

The equation of motion corresponding to the coordinate o« has the simple
form 38/3q = O . Since outside the boundary layer (for o ~ =) we have
8 -~ 0, then 8 = 0 in l)s, Taking thils relation into consideration, the
remaining equations of motion and the equation giving the condition of con-
tinuity, have the form

ow* _ 62w' . * d__“:l_ _
ot T 0wt Divw* + do 0
. 1 9 (H fw;) a (HE"wn) :I
DlV W* - IIiOH.nO [ aa + 61] (2'12)

Here w# is a two-dimensional vector (with components w: and w,, ) tan-
gent to the surface & , Div represents the two-dimensional operation of

<

divergence for the vector Tlelds on the surface S . We shall also give, in
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agreement with the recurrent process of construction of the solution outlined
above, the boundary conditions and also the initial condition

=0 Xr— 9" for a =0, w* =0, wy—0 for a0
WE = (to— V) tor 1=ty (2.13)

Let us point out that on the basis of the condition (2.4), the vector
®@ Xr— cho, as well as w¥*, lles in the plane tangent to S . The initisl
distrivution of the velocitles W, is assumed such that with the exception of
the potential component qu, it 1s concentrated only in the boundary layer.
The asterisk denotes its projection on the plane tangent to S ; the third
component W, of the vector w#* is determined from the equations of conti-
nuity, and no initial conditlions are needed for 1t.

The solution of the heat conduction equations 12.12) under the conditions
(2.13) for the semi-infinite line O s g < = 1is expressed in the form of
the integrals [14]; € and n appear here &s parameters. Then the function
We cap be easily determined from Equation (2.12) and the boundary condition
{2.13) when qaq - = . QGoing back to the variables (2.11) we obtain
t

* s Ty ,t —_ e {m(f)xf—-VQ’°(fv T)] g
w (& 0 L, 1) ZV \ o exp g dT

1 (C &)? C+8&
+2V:w(t—to)}[- REICED — XD G | W 6 Gt

we®n o =ViDw|[{went o], r=r@ao0
4

For the sake of simplicity we shall assume in the future, that at the
initial instant, the flow 1s of potential nature, and that w#= O for t=t,.
Then the previous formulas yileld

—7 r, — 2
w* (£, &, t}wz‘/ Sm(t)x(r~r):i( D exp gy oy it

we (8, M, &, £) = Vv Div [og w* (&, m, &1, t)dgl] =

t
_ % S Div {@ (r}(zx r;-)tf’(pv (r, v)] exp (;wzf;) dv, r=r( 0 (2.14)
to
In the domain Dy we shall write analogously to (2.11)
x5 = VB, wy = v‘“uvﬁ (2.15)
Then we shall change to the variables x,, xj, in the equatlons of motion

{1.7), and make v - O ., We obtain as in (2. 12) and {2.13) the equations of
the boundary layer and the boundary conditions in the form

Jop Py oy ow Oy
9t~ 0®'  9m Tom T oB < (=1, (2.16)
ow; 0%Q°

ﬁm——ZV‘Vazax for B——‘——O, wi‘“éo’ waﬁo for B’—)——'c’o
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{here, ms in the domain f),, we have & = 0}.

The boundary conditions for 8§ = 0O express the fact that the sum
u == Vo' + w satisfies, with an accuracy up to higher order terms, the last
two conditions {1.7). The solution of the heat conduction eguations for w,
and w, with the boundary conditions (2.16) and for zero initial conditions
18 expressed by quadratures [14]. Then, we can determine 4, from the equa-
tion of continuity and the boundary condition (2.16) when B & —w Returning
to the original variables (2.15) we have

t

B A EEDS TN Bk TN N
¥ ‘/ {'\ {}.t:.ld.t‘:‘ exy L ’i“\;.(f —«-‘?)' {t 4—1,')”{;
! 1
T i o O N O —
W — ‘/2\' 5 (-E A(i»—;‘-»wm——w»}- { - "*"“":::'::g::‘:: }(il’
; T 2 Vv~ {f—~1
+
v ; 5
D (x) ‘“/**‘T,:J;t‘sﬂxp (\"‘ T)flf, D () =1 (i -1,2 {217}

0

Laplace's equation for ° is used in the integrand of w, . Expressions
{2.14) and (2.17) which are obtained, are, as expected, functions of the
boundary layer type and decay exponentially outside the domains Dg and D
Thus the components of the vector w* which are tangent and normal %o the
surfaces S and I have different orders of smaliness in v , whereby both
these cgmponents are of an order of magnitude larger in the domain D, than
in Dy (ef.(2.1%) and (2.17)). :

The solutlons of (2.14) and (2.17) are not valid in the domain D[, adja-
cent to the contour T , along which the surfaces § and I intersect each
other. Thls domain which is the intersection of the domains 7, and B,
has 2 thickness of the order % on the normal to the contour 'T . Thus if
we consider that w, w, are bounded in j}F, then the derivatives can be

estimated b :
Y [Owi/ dzpl ~v", [vAW] ~1 1nDp  fer i k=123

But then, there follows from the equations of motion (1.7) in which wu
1s replaced by w , and p by & that [Vs|~1 in Dp. Since 8 = 0 out=-
side l)r, the thickness of the domain ]%‘ 1s a quantity of the order +'73,
then ;.. y'* in Dy, The estimates
[wi~1, [y ! duyl ~v7F, s~n~'% in Dy (2.18)

will be used in the future.

ne

The functions +', ¢!, f'from the expressions (2,1) must compensate the
disparity in the conditlon w.n == (w X r)-n on S, and also in the first
two conditions (1.7) on £ , which 1s obtained by the sclution in the bound-
ary layer of W, 8 . We shall write those boundary conditions, substituting
in them © from {2.1) and taking into account {2.3) and the boundary condi~
tions (2.4)

At wen ap! Wy aft
RSN IO SRR L o
an N on S, dxs V'—\} at
ZIng 1 ® 5 /3 ap° 2 Vv iy - (2“1 9)
— ST g =RV g 2V G e

The functions o' and ' satisfying the conditions {2.19) are sought, as
in (2.5), in the form

O =t S ad Oz zm), e SR (a7, 0) (2.20)

k=0 Ry
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Here a,' and b,* are unknown coefficients, yx 1s a function harmonic
in D and satisfying Neumann's conditions

% . w-n e wy < (2.21)

e Vv on &, 71;:-A"-i7:f on
The right-hand sldes of the condltions (2.21) are determined by Equations
(2.1%) and (2.17) in which it is necessary to make, respectively, { = O, and
x3= 0, whereupon w.n = wy; ~ P/; on § , wg~v on I . Neumann's problem
with the conditions (2.21) can be solved since

SS- ‘611 = _ngl wendS = — _‘_/%_)S)(“VWdV =0

by virtue of the equation of continulty of w .

Let us substitute the expansion {2.20) into the conditions {2.19). The
condition (2.19) on S will be satisfled in agreement with the equations
(2.7) and (2.21). 1In the conditions (2.19) on the surface I we shall
express 3x/dx,, ¥, /dxs by equalities (2.7) and (2.21), and then we shall
expand those conditions in Fourier serles of the functions t,(xl, Xz, O)
on ¥ . We shall obtailn, as in {2.9), the following equations:

. . . .8
Bl) = htats (@) 4 ghyt + - (S XWde) + A, =0
e , X (2.22)
wy
Ak-~5<2l’” +2yv -—~—~]/—~>\|)de (k-:0,1,...)

Let us estimate the components of 4,. Almost in the entire domain I
except in a band of thickness »qug ad jacent to the contour [ , we have
s =0, 8wy / dxy ~ v/, as 1t follows from Equation (2.17). Thus the inte-
grand of A, 1s of the order v/:, In the proximity of the contour T 1in a
small domaln of order %Y. as can be seen from the estimates (2.18), this
integrand is of order ¢ (1). Consequently, Ak,wevV5 and this term can be
dropped in {2.22).

Let us now compute the Fouriler coefflclents of the function yx . Using
the integral theorems of analysls, the boundary conditions (2.7) and (2.21)
for the harmonic functions x and ¢, and Equation div w = 0 , we shall
obtain

(2.23)
1 %k 4 4 M jo_ 1 ( x —
Sm’"d T Ryt Sxama a5 = Ay S X_a?ds T } '5}7‘4”“}8 =
b} bl stz stz
i 1 . 1
= e — cwdS = — —— V = — —— .
Vvlkﬁ S§2n W'lpk by Vvkkﬂ E dlv (’\PkW) 'Vv},kﬁ §v¢k WdV

{n 1s the unit vector of the normal interior to D}.

The function w 1s bounded for v ~ O in Dg and Dp is small in Dy
(see (2.14),(2.17) and (2.18)) and 1s practically equal to zero in the remain-
ing part of the domain D .

Since the volume of the domain Dp 1s of order v , and [J)g of order
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vvﬂ the basic contribution in the last integral {2.23) is brought by the
integral over the domaln 1)5, In the domain Z)S we can write w = w* with
an accuracy up to higher order terms. Furthermore, since the function w¥*
decays rapildly when ¢( Increases, the integration over [Dg can be replaced

by an Integration along { from O to =« over the surface S . Then we
obtain from {2.23)
1 ¥ CCI
s = oWV e — Sv-.. Sw*df; as (2.24
lepk V ;\’h ]SV {“’S w V'VAkZ ‘i’fx ( ) ( )
Using Formulas (2.14) and (2.5) we compute the integral
0? ' - Q
| wrdt = Vif{oxr—S04 - (2.25)
Va (l——t}h
bt t
t ¢
Vo< " (v)dr S
== VRl D et veo y OO e L ]
i

i=1 o Je=l to

In the last summatlon the term with 7 = O has been omitted, silnce

P° = const, V§° = 0. Substituting (2.25) into (2.24) and then substituting
{(2.24) into Equation (2.22)

Bt) = Mfay'  (k=1.2,..) (2.26)
¢ oy (x)dr ;o (v)dv
(@) + 8 LZ"*S S +§ Du\ s =
Here the constants ¢(,, and B{k are determined by Equations (2'27)
Ci= S(rxei—kv@f)-vwkd& Dy == S\—/ipj-vxpde (=1,2.3 jk=1,2,)
s 5

Let us investigate separately the case k = 0 . It corresponds to Ag= O
and, as follows from {(2.7) and the condition (2.8), §°= const = 1//T where
I 1s the area of the nondisturbed free surface I . As a consequence of the
invariance of the volume of the liquid, we have

Sde: S j°dS+v'/’Sj1dS=0

) z z

Substituting into this equation the expansions {2.5) and {2.20) we obtain
b5,°= b,'= O . Then, from Equations (2 9) and (2.22) we obtain for ¥ = O
‘ Vv
ao(t)z—_ao“-}-'vl/'ao = Ajo Sgldl +- Aso Sg:dt Z&) (t)B _V- Sde+consh
ty t i=1 % (2.28)
If Equattons {2.1),(2.3),(2.5) and (2.20) are taken into consideration,
the equation of the hydrodynamic problem in the given approximation takes

o 3 (2.29)
u=ye+w, p=—q+ts,  @=¢ +vigl= 3 ob;+
i=1

[e.o]
+ 2 axy -+ vV e (8), ay = ay’ + vy, €= ayp’ = il
k=1 ]fE

the form
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= [0 - Wt = th(t)m;‘(:rh 22, 0), by == b 4 vliby!

Here w 1s determined by Equations (2.14) and (2.17) in the domains Dy
and [)yy and 1s equal to zero in the remaining part of the domain D , 8 = O
everywhere, except in the domain [),, where the estimates (2.18) are valid.

The functions &, §, and x , harmonic in D , are determined by the
boundary conditions (2.6),{2.7) and (2.21). The function @, 1s specified
by Equation (2.28). For the summation coefficients a, and 2, , determined
by Equations (2.29) we obtain from (2.9) and (2.26), equations which are
valid wlth an accuracy up to small terms of higher order

by = Mlay,  ay -+ ghy— 1Ay — g4 + i§1 ; By + (2.30)

- t t
v T)d > a; (1) dr
+V:t/9~k2 dt mg V(:)_:+ZD S ’( ]=0 (k=1,2,..)
1=1 s F=1 to
The obtained linear system of integro-differential equations describes
the motion of the liquid. If the motion of the body is specifiled, 1.e. the
quantities ¢, ¢,, ¢, and w, are known as functions of time, then the linves-
tigation of the motion of the 1liquid reduces to the solution of Cauchy's
problem for the system (2.30) with the initial conditions

Gk (tﬁ) = S(P(xl, Is, x;;, to) ‘\pk (.Zl, Tz, xs) dV
D

by (to) = Sf(xl, 23, bo) Py (21, 23, 0)dS (k=1,2,..)
b

The functions ¢ and J must be known at the initial instant.

Instead of the potential ¢ for t = i;, we can specify, for instance
3s/3t , and then, in agreement with (2.30), determine

ay () = bk?»;fm) xikz Sfﬂmw (21,2,,0)dS
n

3. Equations of motion of the body with 1iquid.In order to describe the
motion of the body with liquid, we shall simplify Equations {(1.5). We shall
substitute in them the sclution {2.29) and compute the integrals using the
notations (2.10)

Q=me xr.+ p D) by (€A + e:4)

o k-1
Q =me xr.+p 2 b, (e Ay + e dy) = F 4+ mg
k=1
g=gy— Ry == — ge, + giey + gae, (= my - my) 3.1)

K = 1\1 + mr.xg + pg 2} bk (e‘_;A,k — elA2k)

Ea
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The terms with an order of smallness larger than the first have been drop-
ped. Note that the coefficlents a, and b, as well as o, J, w, ¢, and ¢,
and their derivatives are small quantities of the first order, the unit vec~
tors e, satisfy Equations (1.3).

In the last equation of {1.5) we shall substitute u from (2.29)
K:Jl.m+p5m \7(pdV+pSr,x wdl (3.2)
b

Let us transform the first integral cf (3.2) using the relations
r X Vo = — rot (rg) and (2.6), and also the theorems of Stokes and Green

ervcpdvxmgmr,(rqz)dvr.wermpans*:m S é Is ods =

b b B SR i=1
3 3
e i . a(P U ¢ i 6q> . d .
=—e § 0.%%a5 - Ve de)i-ggdé — Sd)i%dS) . (3.3)
i=1  8+L i=1 % 5

Substituting into Equation (3.3) the value of ¢ given by (2.29), and
using the boundary conditions (2.6),(2.7) and (2.21) for the functions ¢,
¥, and x we obtain

3 3 % »
{rocoed = 3 e 3 oy + 3 WBaa + § @2 as)
D i=1 i=t k=1 S48 Vv
J'ij = -]ji = — g (Di e ®; dS = S(D J ds — S(D, o0; ds (3.4)
Stz 5

Here the constants J,,; are the components of the tensor Js of the coup-
led masses for the domain D , in which the free surface I has been replaced
by a plane rigid wall., The constants pB,, are determined by the Equations
{2.10).

Let us transform, as in (2.23), the integral of Formula (3.4)

O;w-ndS = — Sdiv((l)iw)dV — — (v wav (3.5)
S+8 D D
Substituting (3. 5) into (3.4) and then (3.4} into Formula (3.2) to obtaln
3

K=Jo-+p S*‘ Mt ak(Z Bme\, +p5‘r><w- Eei(vtbi-w)]dlf

k—-—l i=1 l) =1
J=J 2 1, (3.6)
Using the identity
3 3
rXwW— E e; (M- w) = — E e; [(r x e; + ;) -w]
i=1 =1

and transforming the integral, which enters Equation (3.6}, as in (2.24), we

obtain
3 3

{[rov— S e@omm]ar - — 3o {or et ) (OS widg)ds  (3.7)

i=1 i=s]
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Taking into consideration Equation (3.7) and Formula (2.25), Expression
(3.6) is brought to the final form

3 o - . N3
K=Jo+p e { S Biita, —‘;Zl SUE;;
, i-1 k=1 Va "=l
» f?j(f}df ) ﬁi o ap{t)dr 1
' tS, —x k;‘ll Co r§ Vi1 L (I=Jy - 3) 3.8)
Eij= S(l xep 1+ Vi) (rxe; 4 ;) dS (i,7=1,2,3 (3.9

8
The constants (,, are determined by Formulas (2.27), and the constants
E,, differ only by constant factors from the elements of the tensor B,
introduced in [9].

The dynamics of the body with a lliquid 1s described by the integro-differ-
entlal equations (2.30) and (3.1) in which K must be substituted from
(3.8), and also by the kinematlc relations (1.3). Then, the motion of the
body is characterized by the parameters R, R, e;, ®;, and the motion of
the llquid by the quantities a, and bk. In fact those parameters should
be specified as initial conditions. The function a,({t), determined by Equa-
tion (2.28) does not affect the motion of the body and the distribution of
the velocities in the liquid, and hence 1s not essential.

In the case of systems more complex than one solid with liquid, it 1s
also necessary to add some complementing equations.

If the body has several liquid-filled cavities, there corresponds & sys=

tem {2.30) to each cavity, and similar groups of terms correspondi to each
cavity are summed in Formulas {3.1) and (3,5). ne

In Equations (2.30),&3.1) and (3.8) one finds the constants X, and J,,
(through the tensor J3), A4,ys Byys Cixs Dy, 8nd E,,, which depend only on
the form of the cavity and the level of the iiquid. in order to determine
them, it is necessary to solve the three boundary problems (2.6) and the
eigenvalue problem (2.7) once for a given form of cavity (it is not necessary
to solve the boundary value problem ?2.21) for the functions ), and then
calculate the integrals (2.10),(2.27) and (3.%) for J,y, (3.9). The volume
of calculations though, will be almost the same as in the case of the ideal
liquid for which it is not necessary to find the coefficients ¢,, and ¥, ,.

Cauchy's problem for Equations {2.30),(3.1),(3.7) and (1.3) can be solved
either by means of a direct numerical integration, or by means of different
approximate methods. Note that these equations can be significantly simpli-
fied. PFirst, in practical problems, it is sufficlent to limit oneself to a
small number of Fourier coefficlents &,, 2, , 1.e. consider only & few forme
(or even one only) of the principal oscillations of the .liquid. Then it 1is
simply assumed that the other coefficlents are equal to zero, and the equa-
tions of the system (2.30) which corresponds to them are discarded.

Secondly, Equations (2.30) and (3.8) include the parameter /vy <1 in the
integral terms, which can serve as a basls to justify the use of the small
parameters method. Thirdly, in many cases the mass of liquid is small with
respect to the mass of the body, thus the terms related to the motion of the
l1iguid can be considered as perturbing. Formally, this leads to the fact
that ¢ can be considered as a small parameter in Equations (3.1) and (3.8).
The simplifications indicated can be widely used in practical problems.

Eaquations (2.30),(3.1) and {3.8) are derived in the linear approximation
with respect to the amplitude of the oscillations {the quantities a,, b,,
w, ¢, and @, and thelr derivatives and integrals are small quantities of
the first order) and with an error of the order of y in the small parameter
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v<1l . If the approximatlons made are to be valid over the entire interval
of motion, 1t 1s necessary that the integrals

Viet’ s ViZy
oo t
entering Formulas {2.30) and {3.8) remain small quantities of the first order
in that interval. This 1is possible, either 1f the interval of motion is suf-
ficlently small {of the order of the unity, i.e. of the characteristic peried
of oscillations), or if the functions w, and &, oscillate around zero.
Otherwise the boundary layer grows with time, and the flow of liquid in the
cavity will never be close to a potential one. The vortex motlon of the
1iquid in the cavity of the solild, even in the absence of viscoslty, has
quite a complicated nature (see [15]].

4, Yoroed osoillations of the 1igquid. Let the motion of the body be

given by Formulas 3
- i o V1 B
g 8me (i=1,2), o o= 2} e, g const 4.0
i=t

where u 1s a complex number and ¢,, and w,, are constants. Furthermore,
let us assume that the unit vectors e, of the system of coordinates associ-
ated with the body, appear in the form e, = 8,0+ 8¢, . Here the e, are
the unit vectors of the cartesian system of coordinates Oy, y.ys (See Sec-
tion 1}, and $8e, are small gquantities of the first order, proportional to
s Taking the relations ?1.3) and {4.1) into account, the unit vectors
®, ‘can be expressed (in the linear approximation) in the form

e = € (0 X ey) /1 == e, - (0, X ;) ety {4.2)

Iet us determine the motion of the liquid for which the functlons u, p
and S depend on time by means of the multiplying factor e*!, The process
of solution will not differ much from the investigations of the Sectlions 2
and 3 in which Cauchy's problem was studied. The solutlon of the problem
(1.?’? is again sought in the form (2.1), where all the terms of the expan-
sions are proportional to . The relations (2.3) are obtained again for
the functions ¥* and ¢* ; for ¢° and J° we get the relations (2.5}, in
which the coefficients 4,° and b,° are proportional to M,

As before, the function w satisfies the equations and boundary condi-
tione (2.12) and (2.13) in the domain Dg , and (2.16) in the domaln Dy,
The solution of those boundary value problems, which depend on time as e*‘*',
has the form (see [9 and 10])

w*(E, 0, §, ) =@ () Xr— Ve (r, ] exp(VR/vE) (r=r(£ 1,0
we (B 0§ 8) = VV/pDiv[79° (v, ) —@ (1) X r]exp (Vi /~¢)

Vv 9°%¢° (1, @, O, 1) Vi
w; (Ty, Ty, Ty, ) =2 Vi T owgn, exp (_m‘}%a> (i=1,2) (4.3)
2v Q% (xy, 22, O, ¢ f vy
Wy {xh &, 23, I} TR - —};i _Si%‘:;gi‘——_)exp \—“ V“;&fa)
"

Here and further on J/u represents the root for which Re /u < 0 . The
functions w, ¢°> and W are proportional to oM.

The functions o' and J* satisfy the relations (2.20}, in which the func-
tion y satlsfying the boundary conditions {2.21) and the cgefficients g,
oportional to ¢4, Instead of Equations (2.25) we obtain by

and >} are pr
means of (4.3?,(2.5):

§°'w*d§: _1—{-—\’:(@ b r——Vq)")::—»‘-f-—i{ é(r xXe, -+ V0)o,+ %\?’%a;’} (A.%)
0 V}L VV& =1 =i
Substituting (4.%) into (2.24) and taking (2.27) into consideration
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3 oo
\ 1 o
> A j=1
The motlon of the liquid in the considered approximation can be described
as before by the relations 52.2?). In Equations (2,29) the function w 1is
now determined by Formulas (4.3) in the domains Dy and Dy,and w =0 1in
the remaining part of the domain I . The function s differs from zero
only in the domein D , where the estimates {(2.18) are valid. The coeffici~
ents a, and b, which enter {2.29) have now the form

4 =a,° + vigl = e e, bp=1bo+ Vi1 — de*,  k=1,2,... (46
(where o, and d, are constants).

From Equations (2.9) and (2.22) and taking the equalities (%.1),(4.5) and
(4.6) into consideration, and A,= O, we obtain algebralc equations for the
constants o, and d, wd, = A 2e

k= PO (k=1,2,..) 4o

3 — 3 o
pey+ gdy— gyo Ay — 820 Ay + 1 2 @z By — ];::’” ( Z Cop @50+ Z Dy cj) == G
i=1 LI j=1

The case & = O 1s considered separately. As in the relation (2.28) we

obtain a _
. A4 +g2 Az l' v
ao(t)—ep"{....______gm 19 0720 B, m..)—»—;S ds
H i‘z-‘: B Vz B *

The funetion a,{t) , as can be seen from {2.29), acts only on the distri-
bution of the pressures in the liquid; the velocity of the liquid, and the
motlon of the body are independent from 1it.

Let us compute the kinetic moment X , which proceeds from Formula (3.6).
Substituting in sequence the relations (3.7),(4.4),{4.1) and (4.6) into (3.6)
3

we obtain as in (3.8)
oo V; 3 oo
K = eut{s.m,, +p Zei[z Byt — 3 ( D) Eyyosa+ ) Cikckﬂ} (4.8)
=1 k=1 VP’ =1 k=1

Here the small terms of higher order have been neglected and the notations
2.27) and (3.9) have been used. Let us write now, taking the equalities
4.1),(4.6) and (4.8) into consideration, the equations of motion of the body
3.1) in the case of forced osclllations

oo
Q = et [m&)o X x4 D) dy (eg Ay -+ ezAzkﬂ
pa
uQ = F — mges -+ m(gues + gioez) e (4.9)

[¢]
BK = M — mr X esg -+ me 1o X (g1e1+ goen) + pge®’ E dy (g Ay — €y Ayy)
R==}
Thus, in the case of forced oscillations, the motion of the body with
1iquid is described by Equations (4.1), (4.2} and (4.7) to (4.9). Taking
B, ¢,0 and w;o as constants, and solving the system of linear equations
( .73, we can find the coefficlents o, and d, which descrihe the motion
of the liquid. Then, Equations (4.9) and (4.8’ determine the force P and
the moment M , necessary to malntaln such a motion of the body with liquid.
FurtheYmore, using Equations (4.7) to (4.9), it is not difficult to find the
forced oscillations of the body with 1llquid subject to the influence of for-
ces and moments changing according to & law in ¢#! (in particular, when u
is & purely imaginary quantity and the law is sinusoidal?. Finally, Equa-
tions (4.7) %o %4.9) can be used to determine the proper oscillations of the
body with liquid. All those problems are purely algebralc, and to simplify
them one can use the conslderations mentioned at the end of Section 3.

Let us also point out that Equations (4.%3) and (4.7) to 4.9; can be imme-
diately obtained from the relations (2.25),(2.30),(3.8) and (3.1), respectiv-
ely, by making the following substitutions:



1182 P.L. Chernous'ko

t
dr © F(T)dT Va
T F —‘—T:—a-——‘—_'f‘ /.1()
dt L S ___ (4.10)
) Vit Ve
in the corresponding equations of Sections 2 and 3.

Here F 18 a function of the form constw*’, entering those relations.
The first equality (4.10) is obvious. To Justify the second let us make the
change of variables 7T = t — x* 1in the integrand and let us take the limit

when to= — =
t < VY i=,
S e* dt .

) ‘ ‘ X —
tim Vit~ 2e* lim 5 exp (— pa?) dx == — % et (Re Vi < 0)

ty—>—00

to->—~co
fo 0

Here the integral i1s computed by means of a known formula [16]. Although
it converges only for Re u > 0 , nevertheless the formal substitution (4.10)
in the relations of Sections 2 and 3 ylelds for any up the exact Expressions
(4.4),(4.5),(4.7) to (4.9) derived earlier in the case of forced oscillations.

5., Partioular oases. (1). If we make v = O 1in the relations of the
Sections 1 to 4, we obtaln the description of the motion of a body, partially
filled with an ideal 1iquid [1 to 6]. In particular, for v = O Equatlons
(2.30),(3.8) together with (1.3) and {3.1) become (with the same notations)
the general equations of the motion of a body with an ideal liquid [3].

2?. Let the liquid entirely fill the cavity; there 18 no free surface I
any more. Then the problem (2.7) has trivial solutions only, and we can take
¥,=0 for ¥ =0, 1, ... .

As before, the solution of the hydrodynamics problem 18 represented by
(2.29), but since all the y,= O , the coefficients a4, and b, and the func-
tion f are inessential. Equations (2.30) and (4.7) should be neglected,
and in the relacions (3.1),(3.8),(4.8),(4.9) the terms including the coeffi-
clents a,, b,, o, dy, 8hould be dropped, 1.e. simply assume a,= b= ¢,=
wd =0 for k=0, 1, ... . Then the formulas for the kinetlc moment
(3.5) and (4.8) and the other relations will be (after changing the nota-
tions) in agreement with the corresponding formulas of [9], in which the
motion of a body with a cavity completely filled with a low viscoslty liquid
has been considered.

3). We shall also investigate the proper oscillations of a viscous liquid
in a container at rest. The coefficlents &, and D, are sought in the form
(4.6). Assuming in (4.7) ¢,0= @zo= we= O for { =1, 2, 3 and eliminating
d,, brings Equations (4.7) to the form

— 3
V vpp
(U2 4 A 2g) 6, = hkﬂ I D h =1,2,..) (5.1)
j=1

The eigen numbers  of the problem of the free oscillations of a viscous
11quid in a container are determined from the conditions of exlstence of a
nonzero solution g, of the linear homogeneous system (5.1). For v =0,
(5.1) ylelds the eigen numbers of the problem of the oscillations of an
ideal 1iquid p, = +ir, Vg Here L, Vg are the frequencies of the free
oscillations assumed not to be multiples of one another: X,# X, for n # m,
n,me=1, 2,... For u = yu,, obviously, we have ¢,= O for & #n

To determine the eigen numbers, and the form of the oscillatlons of the
viscous 1liquid for v<< 1 , we shall use the perturbation method. We shall
find the natural oscillation close to the nth oscillation of the ideal liquid,

assuming - ~ .
Bt + V8, pdih, Ve ofe, = 0(VY)  (kn) 52)
Then the system (5.1) has the form
26p’ncn = VVV—}I:LP‘:I n~2 Dnucn’ (}"kz - A'n.z) gck = -‘/\)""rl”'n}"lf_2 ‘Dn}icu (5"‘5)
with an accuracy up to terms of higher order (k # n).

From the relations (5.3) we determine easil § and ¢, for k #n .
Using the notations (5.2), the condition Re /u, <O , and also the first
relations (4.7), we finally obtain
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Loy UEDVvE Dy hn®Cn
p:::}:lx Vg_- R 5.4, ] dpem — s
" 2Vzn: S
1 —— 1 et S(IQD . 2
- ( <+11) V¥t Digeen L =T ihgPek U e ) 5.4
V2g A2 (e — M) an Vg

The coefficlent o, remains arbitrary and determines the amplitude of the
oscillation. Since D,,> O (see (2.27)}, then Re u < 0 and the viscosity
leads to a damping of the oscillations. Furthermore, from the relation (5.%)
for u , it can be seen that the viscosity ylelds alsc a decrease in the
frequency of the oscillations which 18 equal to the decrement in damping.

The natural oscillations of the liquid are determined by Formulas (2.29) in
which we substitute (4.6) and (5.4). Taking (2.27) and (2.8) into consider-
ation, 1t 1s found that the first formula of (5.4) coincides (with the same
notations) with the equation in [10] giving the elgen numbers of the problem
of the free oscillations of a viscous liquld. In the paper [10] computations
are made for a few specific forms of the cavity. Free and forced oscillations
of a body with ligquid are investigated analogously.
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