


fixed with respect to the body, and O&y,y, which moves with the point 0 . 

We shall assume that in the unperturbed motion those systems of coordinates 

coincide, that the surface C lies in the plane 0~~3~ and that In the 

domain D occupied by the liquid we have X, ~0 (Flg.1). 

In the system of coordinates Oy,ga& the body and the liquid are subject 

to forces due to the massea; their acceleration g = g,-- Ro” results from 

the acceleration due to the gravity &, and the forces of Inertia. Here % 

is the absolute radius vector of the point 0 and the dots refer to the 

derivatives with respect to time t . In the unperturbed case, the accelera- 

tion of the masses g has a constant direction opposite to that of the axis 

.R3 * Since go is a constant vestor, this is possible in the following 

oases: (1) the acceleration of %" of the translation motion 2s constant in 

magnitude and direction; (2) the acceleration w is COllnear with the vec- 

tor & and varies arbitrarily in magnitude; (3) the acceleration &*is 

constant in direction and go-0 (case of welghtkW3sness). 

Looking now at the perturbed motion, we shall consider that the angles 

between the coordinate axes Qx,r,x, and Oy,y,l/, , the absolute angular 

velocity a of the body, and the projections of the acceleration g on the 

axes xl and xz are small qusntities of the first Order. The velocity u 

of the liquid in the system of coordinates O~zgag~ and function I deter- 

mining the equation of the disturbed free surface of the liquid x3=I~,r2,2), 

have the same order of magnitude. The problem is considered In the linear 

formulation. Let us write the momentum equation and the equation of the 

moments for the system *body + liquid" 

Q+=F+mg, g’ = M jr (nw, -i- mQt> x g, rn===rnl-j-m, 

Here Q is the moments of the body with liquid in the system O&yzg3t 

L is the moment, with respect to 0 , of the mo~ntum in the Same system, 

F is the main vector of all external forces applied to the body (except for 

the forces of gravity and Inertia), M Is the main moment of those forces 

with respect to the reference 0 s The vector-radii of the centers of iner- 

tia of the body and of the liquid are represented by rl hr;G r, P respec- 

tively (those vector's, as well as F , are measured from the origin O), and 

3, Is the tensor of inertia of the body with respect to the point 0 . 

With an accuracy up to the hZgher order terns we have (1.53) 

Here C, fs the vector radius (with respect to the reference 0 ) of the 

center of inertia of the system "body + liquid" in the unperturbed state 

(when the liquid is at rest in the system of coordinates &T~x~x~) , (I, are 

the unit vectors of the axes OVA, t = 1, 2, 3. IIt IS evident that the vec- 

tor r,t as well %s the vector rl, are stationary in the system ox,~,;c, . 
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The derivatives of the unit vectors a1 are determined by Equations 

i?i' = 0 X ei (i -= 1, 2, 3) (1.3) 

and are small quantities of the first order. We note also that according to 

the assumptions made, we have an accuracy up to the higher order terms 

g=-ge3+ml+g2e27 gi==geei, Igij<g=lgl (i= 1, 2, 3) (3.4) 

Substituting (1.2) to (1.4) into Equations (1.1) and neglecting higher 

order terms, we have 

Q’=F+w, g = go -. Ro”, m =- ml + m2 

K’ = M + mi, x g + pg (e2 5 xlfdS - el 1 x&U) (1.5) 

(2=moxr,+pj~~S.~~dS+ezSx~~dS) 

B 

K=&.io+~ sr x udV 
x G D 

The linearized equations of motion of the liquid with respect%0 the sys- 

tem O&~J&= and the boundary conditions have the form 

Ut = ---f~p’+g+vAu, divu=O in D, u=wXr onS 

u3==(w x r).e3+af/(3t for 3J3 = f CZl, % t? (4 5) 

Here the Index t denotes a partial derivative, p' is the pressure In 

the liquid, the u, are the projections on the axes X, of the velocity 11 

of the liquid with respect to the system O&&Y, f The last equation of 

(1.6) expresses the kinematic condition on the free surface. Let us intro- 

duce a new unknown function 

P=(P’-Po)IP-gmr 

and let us rewrite the relations (1.6) taking (1.4) into account and express- 

ing the conditions on the nonperturbed free surface C 

ut=--p+vAu, div u = 0 in D, u==mXr on S 

u:, = (0 x r).e3 + af/t%, P - gf + glxl + g2x2 = 2vaU3 I ax3 

(1.7) 
Equations (1.5) and (1.7) describe the dynamics of the body with the 

liquid. It is necessary to add to them the usual kinematic relations (for 
instance in the form (1.3)), and also possibly, the other equations which 
complete the system; for instance, the equations of the control system, the 
equations concerning the other solids, 
tlon, and so on. 

coupled with the body under consldera- 
When considering Cauchy's problem, it Is necessary to spe- 

cify the Initial conditions for the body (position and velozlty of the body) 
and the liquid 

u(r, to) = uo WI f (211 x2, kl) = lo (%r %) (1.8) 

The function ~0 must satisfy the continuity condition, and also, together 
with Ye, the boundary conditions (1.7) at the instant to . 



1170 I.L. chcmous’ko 

Below, Equations (1.5) and (1.7) are Investigated In the case of a high 
Reynolds number: /2T-ly-l) 1, I.e. for the case of a low viscosity. 

l? 
Here 

L Is the characteristic lnear dimension of the cavity, T Is the charac- 
teristic time, the order of magnitude of which is that of the period of the 
oscillations of the body or of the liquid Inside the cavity. Without loss 
of generality, choosing L and T for units' of length and time we get 
VSl. Thus the problem reduces to the asymptotic solution of the equations 
of hydrodynamics (1.7) for v al and the ensuing slmpllflcatlon of Equa- 
tions (1.5). 

2. An~lyrlr of the hydrodymmlor OquAtionr. We seek the solution of the 

problem (1.7) as was done In [9 and lo] by the method of the boundary layer 

C 133, assuming 

u=v+w, p=q+s, v = v” + v’:z v1 + . . . (2.1) 

q = go + v”:ql + . . . ) f = f" + v'/rfl -j- . . . (v<(l) 
Here the superscript refers to the number of the approximation. The func- 

tions w and 8 are functions of the boundary layer type. They can also 

be expanded In series of the powers of ~‘12, whereupon all the coefficients 

of the terms In wk and sk decrease rapidly when the distance to the bound- 

aries of the domain D Increases. Let us denote by D,y and DE thedomalns 

of the boundary layer adjacent from the Inside to the surfaces s and C, 

and having a thickness of the order of Voz. Then outside Ds and DI: we 

can assume w-0 and s-0. 

The functions w and 8 satisfy Equations (1.7) in the same manner as 

the functions v and 4 . Their boundary conditions are obtained by the 

following recurrent process. Let us assume the functions VI, ql, w’, sland 

/I have already been found for t - 0, 1, .., k - 1 . To determine the func- 

tions vk, qt and Ik we shall require that they satisfy, together with the 

approximations found earlier, the condition u.n = (a~ X r)*n on the wa11 S 

and the first two conditions (1.7) on Z . Here n IS the unit vector of 

the normal to S directed inwards. Then we determine the functions wL and 

a* which, as the functions found earlier, must satisfy the condition u* - 

= (UI x r)* on S , the last two conditions (1.7) on C and also the condl- 

tlons wk- 0 and akq 0 outside Ds and DX. The asterisk refers always 

to the projectlon of the vector on the plane tangent to the surface S . The 

recurrent process described leads to the series (2.1) each subsequent term 

of which is a quantity of order y'iz with respect to the previous one. 

For the functions V’ and 9' which satisfy Equations (1.7) we have 

v*k = __vqfi+ Avk-2, di\r vh’ = 0 (k 7 O,,l,...) (2.2) 

whereby for k I 0, 1 the term bvkm2 does not appear in the first equation 

of (2.2). 

Thus we have (rot v")t= (rot V')%- 0 . We shall assume that the Initial 

distribution of the velocities (1.8) Is potential everywhere, except, maybe 

on the boundary layer domains Ds, DC. Then at t - to , we shall have 

rot vL= 0 In D for all functions vk . Consequently, rot v"= rot v'- 0 

In D for all t 2 to . By Induction It can be easily proved that 



rot Vk - 0 , AVk - 0 for all k when t 2 t, . Without loss of generality 

and taking (2.2) into conalderation, we shall assume that 

Below we shall limit ourselves to the determination of the functions qL. 

and jk (and consequently v* and nb) for k - 0, 1 and also of the func- 

tions u" and 8' which will be simply denoted by w and 8 (i.e. only by 

those terms which are expressed in (2.1)). 

The boundary condition for the functions cp" and f*, as it follows from 

(2.3) and (1.7) and the described method of construction of the solutlon in 

the form (2.1), will be as follows: 

This Is the usual problem for an ideal liquid, the solution of which aS 

known from [l and 3 to 51, can be sought In the form 

(2.5) 
k=O 

Here Ul*' PO'., represent the projections of the vector I on the axes 

X$ ; the (I~“, b,O are coefficients yet un!.mown and the $, $t represent 

time independent functions of s,, x0 and x9. The functions 'b, are ?ihu- 

kovskli potentials for the domain D" , under the condition that the free 
surface C Is replaced by a rigid wall. They satisfy the boundary condl- 

tlons AQ=O inD, c%D+/&z = (f X n)+e$ on S 

&.D,/% = (r X e2j)-ei onI: (i = 1, 2, 3) (2.6) 

and are determined with an accuracy up to any arbitrary constants. The func- 

tions lr are the elgenfunctlons of the problem of the free oscillations of 

an ideal liquid (2.7) 

A$k = 0 in D, agk 
an = 0 on s, Wk 

az = hk%pk onX 
8 

(k--0,1,...) 

It is known Cl], that the problem (2.7) has an infinlte !U.ecrete spectrum 
of finite eigenvalues X,, whereupon X0= 0 , and all other A, are real and 
poeltive. The functions 

and the fun,!!%* Xa 
x5) represent a complete orthogonal 

system in ZJ &,, xs, 0) a complete orthogonal system 
In Z . Thus, uelng Green's theorem and the boundary condltlons (2.7) we 

There follows the orthogonality of the functions tr(x,, rat 0) and 
We shall subject the functions #,, to the norm 

c *k*l = 8k, (k, t = Q,1, . . .) 
2 

G-3) 
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(where I&, Is Kronecker's symbol). 

By virtue of (2.6) and (2.7) the expansions (2.5) satisfy the equations 

and the condition (2.4) concerning S . In order to satisfy also the condl- 

tlons (2.4) on the surface Z , we shall substitute In those conditions the 

expansions (2.5) and we shall express the derlvatlves aq /ax, and a* Ja.+ 

on .Y In terms of the conditions (2.6),(2.7). The equations obtained In 

the domain E (for x3- 0) will be expanded In Fcurler series along the ortho- 

gonal system of functions lt(x,, xp, 0) and the coefficients corresponding 

to the same lr equated to each other. We obtain a system of equations for 

the coefficients of the expansions (2.5). This system Is given In [l, 3 and 

41 In somewhat different notations. 

(bkO)’ = hk’?UkO, (a,:)’ + gb,” - gda - g,A,i, + 5 w,‘&, = 0 

(2.9) 

(k = o, I, . .) 
i=l 

The following notations were Introduced for the Fourier coefficients: 

Aj, = ’ sj$,dS 
s 

(j = 1, 2), &= 
s 

(D&dS (i-1,2,3; k=O,l,...) (2.10) 
x c 

Let us determine the functions n and s which we shall seek separately 

in the domains Ds and DC (similar solutions can be found In [l, 9 and 

101). In the domaln Ds, which has a thickness of the order of y'/z and Is 

adjacent from the Inside to the surface S , we shall Introduce curvilinear 

orthogonal coordinates 5, n and C such that the surface Z Is the sur- 

face C-0, whereby C>O, Inside the domain Ds. 

Let We, WI1 and WC be the components. of the vector w In those coor- 

dinates, Hz, H, and HC the corresponding coefficients of Lam&, and HCO, 

H” Hc” the values of those coefficients for C - 0 . Without loss of 

gezlrallty, let us take Hc" = 1, then C Is the dljtance to the surface 

S along the Internal normal n . 

Let us write the equations of motion (1.7) substituting in them u for 

w, P for s , in the coordinates 5, n and C . Then let us make the 

change of variables 
5 = y'i'a, wC = V’lrW,. (2.11) 

and take the limit when v - 0 In the equations of motion. 

The equation of motion corresponding to the coordinate 0: has the simple 

form ah/a, = 0 . Since outside the boundary layer (for a - =) we have 

S-O, then s = 0 in DS. Taking this relation Into consideration, the 

remaining equations of motion and the equation giving the condition of con- 

tinuity, have the form 
aW* SW* 

at==9 
Divw* +dz=O 

(2.12) 

Here H+ Is a two-dimensional vector (with components ZUE and w,,, ) tan- 
gent to the surface S , Dlv represents the two-dimensional operation of 

divergence for the vector fields on the surface S . We shall also give, In 



agreement with the recurrent process of construction of the solution outlined 

above, the boundary conditions and also the initial condition 

w*=oxP-vcp” for a=o, w*-%o, w,-+o for a+ 00 

w* -- (ug- vrp")" for t= t, (2,13) 

Let ua point out that on the basis of the condition (2.4), the vector 

0 x r - Vcp", as well as w*, lies in the plane tangent to S . The initial 

distribution of the velocities & is assumed suchthatwith the exception of 

the potential component vcp", it is concentrated only In the boundary layer. 

The asterisk denotes Its projection on the plane tangent to s ; the third 

component Wa of the Vector w* Is determined from the equations of conti- 

nuity, and no initial conditions are needed for it. 

The solution of the heat conduction equations 12.12) under the conditions 

(2.13) for the semi-lnfinlte line O%a<m is expressed in the form of 

the Integrals 114-J; 5 and n appear here as parameters. Then the function 

We can be easily determined from Equation (2.12) and the boundary condition 
(2.13) when a - 0~ . Ooihg back to the variables (2.11) we obtain 

1 

For the sake of simplicity we shall assume in the future, that at the 

lnltlal Instant, the flow is of potential nature, and that w*= 0 for t= t,,. 

Then the previous formulas yield 

f; ’ Divfro(~)x r -Vq'(r, .c)] =- 
s 

6 t* 
(8 - zl"' 

--c2 at 
ex*4v(t-%) ’ 

r = r (E, q, 0) (2.14) 

In the domain D, we Shall write analogously to (2.11) 

(2.15) 

Then we shall change to the variables .xX, us, 8 
(1.7), and make v - 0 . 

in the equations of motion 
We obtain as in (2.12) and (2.13) the equations of 

the boundary layer and the boundary conditions in the form 

(2.16) 

3Wi a%* 
-5- 

at ap ’ 
!%+~!+~_o (i :-= 1, 2) 

t3W, 

q-==-2JGgg for p=o, Wi-+O' lUgif for s+--w 
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(here, 8s In the domain f,,,, we have s = 0). 

The boundary conditions for @ = 0 express the fact that the sum 
with an accuracy up to higher order terms, the last 

and 
The solution af the heat conduction equations for w1 

w, with the boundary condltlons (2.16) and for zero initial conditions 
Is expressed by quadratures [14]. Then, we can determine 7,. from the equa- 
tion of continuity %nd the boundary condltlon (2.16) when B 2 -m . Returning 
to the original variables (2.15) we have 

La lace’s equation for rpO Is used In the integrand of w, 
(2.147 and (2.17) which are obtained, %re, as expected, 

Expressions 
functi& of the 

boundary layer type and decay exponentially outside the domains If, and U,. 
Thus the components of the vector IT* which are t%ngent and norm%1 to the 
surfaces S and Z have different orders of snrallness in v , whereby both 
these components are of an order of magnitude larger in the domain 1>,, than 
In D, (cf'.(2.14) and (2.17)). 

The solutions of (2.1’1) and (2.17) are not valid in the domain D,, adja- 
cent to the contour r along whlchthe surfaces S and C intersect each 
other, This dom%in whl& is the intersection of the dam%ins II 
has a thickness of the order vilr on the normal to the contour Tf 

and I)L: 
. Thus if 

we consider that wt nL are bounded in D,, then the derivatives can be 
estimated by 

1 &fQ i i?“h. j * +, / YAW/ _ 1 in D, for i, k L- 1, 2, 3 

But then, there follows from the equations of motion (1.7) in which U 
is replaoed by n , and P by 8 
side D,, 

that / VS~ - 1 in Dr. Since a - 0 out- 

then 
the thickness of the domaln I), is a quantity of the order vii*. 

s - y','p in lIF. The estimates 

iwi-- 1, i&C,:nX:I! -"Y 
-' > s - 2” p in n,, (2. t8) 

will be used in the future. 

The functions vl, q', Z'from ths expressions (2.1) must compensate the 

disparity in the condition u-n-=(wXr).n on S, and also in the first 

two conditions (1.7) on I: , which is obtained by the solution in the bound- 

ary layer of w, 8 . We shall write those boundary conditions, substituting 
in them u from (2‘1) and taking into account (2.3) and the boundary condl- 

tions (2.4) 
acp' _,_ .i”:r “L ?.!! 
ax3 I/; df 

(2.19) 

The functions $ and f satisfying the conditions (2.19) Ere sought, a% 

in (2.5), In the form 

A=0 
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Here a,’ and 2r,' are unknown coefficients, x Is a Function harmonic 

in D and satisfying Neumann's conditions 

(2.21) 

The right-hand sldes of the condltlons (2.21) are determined by Equations 

(2.14) and (2.17) in which It is necessary to make, respectively, C - 0, and 

x3= 0, whereupon w.n -5 u+_ - j/G on S , w,- v on C . Neumann's problem 

with the conditions (2.21) can be solved since 

by virtue of the equation of continuity of w . 

Let us substitute the expansion (2.20) into the conditions (2.19). The 
condition (2.19) on $ will be satisfied in agreement with the equations 

(2.7) and (2.21). In the conditions (2.19) on the surface C we shall 

express ax/ax3, a$,$& by equalities (2.7) and (2.21), and then we Shall 

expand those conditions in Fourier series of the functions Ik(Xl, XaS 0) 

on C . We shall obtain, as In (2.9), the following equations: 

Arc S(2~~;-~i-2v’;~-~)~Kd~ 
(2.22) 

(k : 0, 1, . . .) 
s 

Let us estimate the components of &. Almost in the entire domain .E 

except in a band of thickness -uv z, 'i adjacent to the contour r , we have 

s = 0, dw, I ax, - vlly, as it follows From Equation (2.17). Thus the lnte- 

grand of A,, is of the order ~'11. In the proximity of the contour r In a 

small domain of order $12, as can be seen from the estimates (2.18), this 

integrand is of order 0 (1). Consequently, &. .-~y%, and this term cari be 

dropped in (2.22). 

Let us now compute the Fourier coefficients of the Function x . Using 

the integral theorems of analysis, the boundary conditions (2.7) and (2.21) 

for the harmonic Functions x and Irr and Equation dlv w - 0 , we shall 

obtain (2.23) 

(n Is the unit vector of the normal interior to D). 

Ihe function w Is bounded For v - 0 In Ds and &, IS small In D, 

(see (2.14),(2.17) and(2.18))and Is practically equal to zero In the remaln- 

lng part of the domain D . 

Since the volume of the domain Dr is of order v , and Ds of order 
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v’/* , the basic contrlbutlon in the last integral (2.23) is brought by the 

integral over the domain DF. In the domain Ds we can write w - W* with 

an accuracy up to higher order terms. Furthermore, since the function w* 

decays rapidly when 6 Increases, the integration over Ds can be replaced 

by an integration along 6 from 0 to - over the surface S . Then we 

obtain from (2.23) 

J 
x 
Using Formu las (2.14) and (2.5) we compute the integral 

In the last summation the term with j 

9" = const, Vf = 0. substituting (2.25 

(2.24) into Equation (2.22) 

(2.25) 

= 0 has been omitted, since 

into (2.24) and then substituting 

Here the constants C,, and nJ, are determined by Equations (2.27) 

cik I ' (r x ei + vQ’I)*v$&S, 
s 

Di,= So+j*o$+&S’ (i=l,2,3; j,k=l,Z ,.,.) 

s s 

Let us investigate separately the case k = 0 . It corresponds to hO= 0 
and, as follows from (2.7) and the condition (2.8), #"= const = l/z/c where 
C Is the area of the nondlsturbed free surface Z , As a consequence of the 
Invariance of the volume of the liquid, we have 

5 s fdS= p&s+ 
2. 

s fldS=O 

.x 

Substituting into this equation the expansions (2.5) and (2.20) we obtain 
b,Ol b,l= 0 . Then, from Equations (2.9) and (2.22) we obtain for Jr = 0 

I t 3 
,a 

a,, (t) = aoo + Y”’ a,,’ = Alo gl dt $- Azo 
c- 

1 gJ dt - x oi (t) B,,, - - 
s v, 

x dS + const 

to to 
i=l (2.28) 

If Equ:*tLons (2.1),(2.3),(2.5) and (2.20) are taken into consideration, 

the equation of the hydrodynamic problem in the given approximation takes 

the form 

u='C74,+wt P= -%fS7 cp = (f + y?p(pl = i] wiqli _f_ (2.29) 

f 5 ak+k f v”‘x + c(t), 

i=l 

ak - ak” + v’/takl, 
k=l 
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k=l 

Here w is determined by Equations (2.14) and (2.17) in the domains Ds 

and n, and Is equal to zero In the remaining part of the domain D , 8 z 0 
everywhere, except In the domain &, where the estimates (2.18) are valid. 

The functions $, +r and x , harmonic in D , are determined by the 
boundary conditions (Z.6),(2.7) and (2.21). The function a0 is specified 

by Equation (2.28). For the summation coefficients a, and bk, determined 

by Equations (2.29) we obtain from (2.9) and (2.26), equations which are 

valid with an accuracy up to small terms of higher order 
3 

The obtalned linear system of integro-differential equations describes 

the motion of the liquid. If the motion of the body is specified, i.e. the 

quantities Q, &, 0, and toi are known as functions of time, then the lnves- 

tigation of the motion of the liquid reduces to the solution of Cauchy's 

problem for the system (2.30) with the initial conditions 

The functions g, and $ must be tiown at the initial instant. 

Instead of the potential cp for t - to, we can specify, for instance 

aY/at , and then, in agreement with (2.x0), determine 

h’ (to) 
uk @J) = 7 = + 

3. EquAtlonr of n&Ion ai thr body with lZQuM.In order to describe the 

motion of the body with liquid, we shall simplify Equations (1.5). We shall 

substitute in them the solution (2.29) and compute the integrals using the 

notations (2.10) 
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The terms with an order of smallness larger than the f'lrst have been drop- 

ped. Note that the coefficients a, and b, as well as 9, j', UJ, ol and o2 

and their derivatives are small quantities of the first order, the unit vec- 

tors l 1 satisfy Equations (1.3). 

In the last equation of (1.5) we shall substitute u from (2.29) 

K--:J1.o+~srx~~dl.+~Srr~wdl. (3.2) 
LJ 

Let us transform the first integral cf (3.a using the relations 

r x VCp = -rot(*) and (2.6), and also the theorems of Stokes and Green 

Substituting into Equation (3.3) the value of cp given by (2.291, and 

using the boundary conditions (2.6),(2.7) and (2.21) for the functions @$, 

*r and x we obtain 

5 r X VW’ = i ej ( i wiJij + i hk2Bjkak + 5 
LJ i=l i=l 

(-Pi wF dS j y 
k=l s .+- 22 

Here the constants J,, are the components of the tensor Ja of the coup- 

led masses for the domain D , In which the free surface C has beenreplaced 

by a plane rigid wall. The constants I$* are determined by the Equations 

(2.10). 

Let us transform, as In (2.23), the Integral of Formula (3.4) 

s 
Oiw.ndS = - 

s 
div (Q,w) dV = - ’ qOi. wdli 

5 
(3.5) 

stl: I) D 

Substituting (3.5) Into (3.4) and then (3.4) Into Formula (3.2) to obtain 

Using the Identity 
3 

rxw-- x ei(QDi.w) = -- i ej [(r x ei + ‘;7Qi).wJ 
i=l i=l 

J z_-. J, 4. J, (3.6) 

and transforming the integral, which enters Equation (3.6), as in (2.24!, we 

obtain 

r x w - i ei (~0~. w)\dV = - $j ei 1 (r x ei -+ v(Di) cj w*dc) dS (3.7) 
i=l i=l S 



Hotion of a body rlth ‘ avlty putlr ill&d with b llquld 1179 

Taking into consideration Equation (3.7) and Formula (2.25), Expression 

(3.6) is brought to the final form 

>: 

(3.8) 

Eij z c 
.? 

(I’ Y Ci $- v;clJf)*(r X ej + y(I),)dS (i, i := 1, 2, 3) (3.9) 

The constants C,, are determined by Formulas (2.27), and the constants 

0 1j differ only by constant factors from the elements of the tensor B , 

introduced in [g]. 

The dynamics of the body with a liquid is described by the lntegro-differ- 

ential equations (2.30) and (3.1) In which K must be substituted from 

(3.8), and also by the kinematic relations (1.3). Then, the motion of the 

body is characterized by the parameters ]R,, R',, ei, Oi, and the motion of 

the liquid by the quantities (I% and b,. In fact those parameters should 

be specified as initial conditions. The function a,(t), determined by Equa- 

tion (2.28) does not affect the motion of the body and the distribution of 

the velocities in the lfquid, and hence is not essential. 

In the case of systems more complex than one solid with liquid, it is 
alSo necessary to add some complementing equations. 

If the body has several liquid-filled cavities, there corresponds a sys- 
tem (2.30) to each cavity, and similar grou 8 
cavity are summed in Formulas (3.1) and (3. f; ). 

of terms corresponding to @&ch 

In Equations (2.301, 
(through the tensor Je 

3.1) and (3.8) one finds the constants 1, and 3,, 

to solve the boundary value problem 
calculate the Integrals (2.10),(2.27 
of calculations though, will be almost the same as In & 
liquid for which it is not necessary to find the coefficients C,, and E,$. 

Cauchy’s problem for Equations (2.30),(3.1).(3.7) and (1.3) can be solved 
either by means of a direct numerical integration , or by means of different 
approximate methods. Note that these eqUi%tionS Can bS 8~f~U~tly SiISPli- 
fied, First, in practical problems, It is sufficient to 1-t oneself to 8 
small number of Fourier coefficients a*, b,, i.e. consider only a few fomns 
(or even one only) of the principal osclllatlons of the.llquid. Then it ii% 
simply assumed that the other coefficients are equal to zero, and the eqUa- 
tlons of the system (2.30) which corresponds to them are discarded. 

Secondly, Equation8 (2.30) and (3.8) include the PaIWSStsr Jvalin the 
Integral terms, which can serve as 8 basis to Justify the USC of the 8-11 
parameters method. Thirdly, In many cases the mn88 of liquid 18 8-1 with 
respect to the mass of the body, thus the term8 related to the m&Ion of the 
liquid can be coneidered as perturbing. Formally, this lsSd8 to the fact 
that p can be considered as a small parameter in Equations (3-l) snd (3.8). 
The simplifications indicated can be widely used in practical Problems. 

Equations (2.30),(3.1) and (3.8) 8re derived In the linear aPProxlmation 
with respect to the amplitude of the oscillation8 (the qUantitie8 Sk, brr 
u), g1 and aa and their derivatives and integral8 are Small quMtitie8 Of 
the first order) and with an error of the order of v in the 86al1 Parameter 
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v*1 . If the approximations made are to be valid over the entire interval 
of motion, It Is necessary that the integrals 

f 
f @I. (t) dr 

I -I---. 
1” v L-1-_. t ’ 

( _TEg;. 

7: 

entering Formulas (2.3;) and (3.8) remain small quantities of the first orders 
in that interval. This is possible, either If the interval of motion is suf- 
ficiently small fof the order of the unity, i.e. of the characteristic period 
of oscillations), or if the functions W, and a, oscillate around. zero. 
Otherwise the boundary layer grows with time, and the flow of liquid in the 
cavity will never be close to a potential one. The vortex motion of the 
liquid In the cavity of the solid, even in the absence of viscosity, has 
quite a complicated nature (see El.53). 

4, lomod oroillrtionr oi the llpuld, Let the motion of the body be 
given by Formulas 3 

g,: : g&?@ (i --= 1, 2). w -woe PII -.z x cp;$?!:J, g :- - cttrlst (h_lf 
i-k 

where p is a complex number and glo and UJ,~ are constants. Furthermore, 
let us assume that the unit vectors (1, of the system of coordinates associ- 
ated with the body, appear in the form a,- b,O+ be, . Here the es0 are 
the unit vectors of the cartesian system of coordinates f&y&, (see See- 
tion l), and 4& are small 
ei*r Taking the relations 4 

uantities of the first order, proportional to 
1.3) and (4.1) into account, the unit vectors 

l I ‘can be expressed (in the linear approximation) in the form 

~tsi=eio+(~Xeiof/~=eio+t~ox~i,~)e~f/~ @.2) 
Let us determine the motion of the liquid for which the functions Ii, P 

and f depend on time by means of the multiplying factor ePt. The Process 
of solution will not differ much from the Investigations of the SeCtlOnS 2 

in which Cauchy's problem was studied. 
c?f iS W8in 

The solution of the problem 
sought in the form (2.11, where 811 the terms of the expan- 

sions are proportional to e@_ The relations (2.3) are obtained again for 
the functions ?P and (I' ; for mD and f" we get the relations (2.5f, in 
which the coefficient8 0," and bkO are proportional to &. 

As before, the function u satisfies the equations and boundary condi- 
tions (2.12) and (2.13) in the domain Ds , and (2.16) in the domain D,. 
The solutfon of those boundary value problems, which depend on time as esf 
h8e the form fsee 19 8nd 10)) 

t 

w* (4. rlt 5, 1) = 10 if) x r - Vlp” (r, Gl exp ( Vfit) 

Here and further an &J represents the root for which Re JV E: 0 . 
fuuctions I), cp" 8nd * are proportional to .+*). 

The functions + 8nd .f' satisfy the relations (2.20), in which the 
eatd.##ying the boundary- conditions (2.21) and the coefficients 

iii? b"l 8x-e 
means :f 

to .Pt, Instead of Bquatlons (2.25) we obtain 
(4.3 

fUIlC” 

b", 

1 

Substituting (4.4) into (2.24) and tak5ng (2.27) Into cons+ration 
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The motion of the liquid In the considered approximation can be described 
as before by the relations (2.29). In Equation8 (2.29) the funatlon u is 
now deteded by Formulas (4.3).In the domains D, &d DE, and w - 0 ln 
the remaining part of the domain 0 . The function 8 differs from zero 
only In the domain + ,where the estimates (2.18) are valid. The coefflci- 
ents a, and b, which enter (2.29) have now the form 

Qk = UkO -j- y’ir Q 1 -_ 
k -cke Irt , b k =f b,” + ,‘I, bkl = d,e@, k=l,Z,... (4.B) 

(where O~ and d, are constants). 

From Equations (2.9) and (2.22) and taking the eqUalltle5 (4.1),(4.5) and 
(4.6) Into consideration, and Ak- 0, we obtain algebraic equations for the 
constants oy and d, 

@, = &2el, (k = 1,2,.. .) 
3 3 m 

(4.7) .- 

The case k - 0 is considered separately. As In the relation (2.28) we 
obtain 

ao(t) = elrt &oAro -I- &o&o 

p 

The function a,(t) as can be seen from (2.29), acts only on the dietrl- 
bution of the pressures'in the liquid; the velocity of the liquid, and the 
motion of the body are independent from It. 

Let us compute t&e kinetic moment X , which roceede from POrwla (3.6). 
Substituting in sequence the relations 
we obtain as in (3.8) 

(3.7),(4.!),(4,1) and (4.6) Into (3.6) 

been neglected and the notatlons 
Let us write now, taking the equalities 

the equations of motion of the body 

03 

Q =eP'[ me, "r,+Pp 2 d,(e,A,,+eaAzk 
k=l 

pQ = F - mgea + n(gl& i- g&h) @” (4.9) 

pK=M- mr, X esg + nzePt re x (glel -b&t%) f pge”’ i dk(e2Alk-elA2k) 

k=l 

‘Ilrus, in the case of forced oscillations the motion of the body with 
liquid is described by Equations (4.1),(4.2! and (4.7) to (4.9). Taking 

and solving the system of linear equations 
and d whlah descrlhe the motion 

of the liquid. Then, Equations (4.9) ind (4.85 determlne the force I and 
the moment % 
Furthevmore, 

necessary to maintain such a motion of the body with liquid. 
u&g Equations (4.7) to (4.9), it Is not difficult to flnd the 

forced oscillations of the body with liquid subject to the Influence of fop- 
ces and moments changing according to a law ln & (in 

inary quantity and the law 1s alnusoidal 
4.9) 

P 
artlcular, when p 

Finally, Equa- 
can be used to determlne the proper ~sclllatlona of the 

body with liquid. All those problems are purely algebraic, and to simplify 
them one can use the considerations mentioned at the end of Seatlon 3. 

Let us also point out that Equations (4.4) and (4. 
dlately obtained from the relations (2.%),(2.30),(3.8 
ely, by making the following substitutions: 
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(4.10) 

In the corresponding equations of Sections 2 and 3. 

Here F Is a function of the form const.@, 
The first equality (4.10) Is obvious. 

entering those relations. 
To justify the second let us make the 

change of variables 7 = t - J? in the lntegrand and let us take the limit 
when tad - 0 

Here the integral is computed by means of a known formula 1163. Although 
it converges only for Re p > 0 , nevertheless the formal substitution (4.10) 
In the relations of Sections 2 and 3 yields for any v the exact Expressions 
(4.4),(4.5),(4.7) to (4.9) derived earlier In the case of forced oscillations. 

5. ?@rtioui~ oazoz. (1). If we make v - 0 in the relations of the 
Sections 1 to 4, we obtain the description of the motion of a body, partially 
filled with an Ideal liquid [l to 63. In particular, for v - 0 Equations 
(2.30),(3.8) together with (1.3) and (3.1) become (with the same notations) 
the eneral equations of the motion of a body with an Ideal liquid [3]. 

27. Let the liquid entirely fill the cavity; there ia no free surface C 
any more. Then the problem (2.7) has trivial solutions only, and we can take 
1,~ 0 for k - 0, 1, . . . . 

As before, the solution of the hydrodynamics problem is represented by 
(2.29), but since all the tr- 0 the coefficients a, and b, and the func- 
tlon f are inessential. EquatlAns (2.30) and (4.7) should be neglected, 
and in the relations (3.1),(3.8),(4.8),(4.9) the terms Including the coeffl- 
clents ak, b,, o,., dt, should be dropped, I.e. simply assume a,- b,= cL= 
i3&j kdfp;,,; - 0, 1, -.- . Then the formulas for the kinetic moment 

and the other relations will be (after changing the nota- 
tions) in agreement with the corresponding formulas of [g], In which the 
motion of a body with a cavity completely filled with a low viscosity liquid 
has been considered. 

3). We shall also investigate the proper oscillations of a viscous liquid 
in a container at rest. 
(4.6). Assuming In (4.7) 

The coefflcjents aII and b, are sought in the form 
olO- ~7~~' UI,~- 0 for t - 1, 2, 3 and elimlnatlng 

d ~, brings Equations (4.7) to the form 

(5.1) 

The elgen numbers p of the problem of the free osclllatlons of a viscous 
liquid In a container are determined from the conditions of existence of a 
nonzero solution ct of the linear homogeneous system (5.1). For v =D , 
(5.1) yields the elgen n bers of the problem of the oscillations of an 
ideal liquid pL, = fi1, Here h,, I/p are the frequencies of the free 
oscillations assumed not to be multiples of one another: A,# A. for n#m, 
n, m - 1, 2,... For p I p,, obviously, we have ct= 0 for k # n . 

To determine the elgen numbers, and the form of the oscillations of the 
viacoua liquid for v* 1 we shall use the perturbation method. We shall 
find the natural osclllatl~n close to the nth oscillation of the ideal liquid, 
assuming 

Then the system (5.1) has the form 

with an accuracy up to terms of higher order (k # n). 

From the relations (5.3) we determine easll 
fi 

b and C~ for k#n. 
Using the notations (5.2), the condition Re us< 0 , and also the first 
relations (4.7), we finally obtain 
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The coefficient on remains arbitrar and determines the amplitude of the 
oscillation. Since I),.> 0 (see (2.27) T, then Re w < 0 and the viscosity 
leads to a damping of the os&llations;/Furthermore, from the relation (5.4) 
for w , it can be seen that the viscosity yields also a decrease In the 
frequency of the oscillations which is equal to the decrement In damp1 
The natural oscillations of the liquid are determined by Formulas (2.29 7' in 
which we substitute (4.6) and (5.4). Taking 2. 

t "3 
) and (2.8) into consider- 

ation, It is found that the first formula of 5.4 coincides (wlth the same 
notations) with the equation In IlO] giving the eigen numbers of the problem 
of the free oscillations of a viscous liquid. In the paper [lo] computations 
are made for a few specific forms of the cavity. Free and forced oscillations 
of a body with liquid are investigated analogously. 
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